Università degli Studi di Pavia - Facoltà di Scienze MMFFNN

Le informazioni di questo sito non sono più aggiornate. Consultare il nuovo link
Home

HomeDidatticaCorsi › Metodi matematici della fisica I

Metodi matematici della fisica I

Corsi di laurea:
Fisica
Docenti:
Salmistraro Franco
Anno accademico:
2009/2010
Codice corso:
81499
Crediti formativi:
5
Ambiti:
FIS/02
Decreto Ministeriale:
509/99
Ore di lezione:
40
Lingua di insegnamento:
Italiano

Modalità

Esame orale a fine corso, secondo appelli programmati.

Prerequisiti

Analisi matematica 1 (mod. 1-2)
Algebra lineare e geometria (mod. 1-2)
Complementi di analisi matematica I
Complementi di analisi matematica II

Programma

1 - Spazi di Hilbert

Spazi normati, completezza, spazi di Banach - Spazi prehilbertiani e hilbertiani - Sistemi ortonormali e sistemi ortonormali completi - Disuguaglianze di Schwarz e di Bessel - Serie generalizzata di Fourier e identità di Parseval - Costruzione di Gram- Schmidt - Isomorfismi tra spazi di Hilbert - Varietà e sottospazi - Teorema di proiezione - Operatori e funzionali lineari in spazi di Hilbert - Teorema di Riesz-Fréchet per un funzionale lineare e continuo - Completezza debole di uno spazio di Hilbert.

2 - Funzioni analitiche

Definizione e proprietà fondamentali - Integrali curvilinei in campo complesso, teoremi di Cauchy - Formula integrale di Cauchy e infinita derivabilità delle funzioni analitiche - Serie di Taylor e di Laurent - Punti singolari isolati al finito e all'infinito, classificazione delle singolarità e criteri di riconoscimento per singolarità di tipo apparente e polare - Teorema dei residui per una regione limitata e sua estensione ad un intorno del punto all'infinito - Prolungamento analitico secondo Weierstrass e prolungamento analitico lungo una curva in campo complesso - Funzioni polidrome, punti di diramazione, cicli di monodromia e di polidromia - Applicazione del teorema dei residui al calcolo di integrali curvilinei nel piano complesso e di integrali generalizzati sull'asse reale.

Bibliografia

Parte 1: dispense.

Testo consigliato per la parte 2: V. Smirnov "Cours de mathématiques supérieurs" , Vol III, parte II, Cap. I e III, Mir (1972).


Elenco appelli e prove

Nessuna prova presente

Credits: apnetwork.it